Sliding tester – a device to measure temperature and friction during sliding

R. Verhelst, P. Verleysen, J. Degrieck, S. Rambour, G. Schoukens

DESSO DLW
SPORTS SYSTEMS
Overview

• introduction
• goal
• experimental setup
• results & discussion
• conclusion
Overview

• introduction
• goal
• experimental setup
• results & discussion
• conclusion
Introduction

• artificial turf: widely used in tennis, hockey, ...

• 3rd generation artificial turf: increased use in football

• players & clubs still have some resistance
Introduction

• the problem of artificial turf: **sliding**
• risk of burning and abrasion injuries

• ISA Sport (2003): 62% of players find artificial turf unsuitable for making sliding tackles → need for measurement method
Introduction

• existing test device: Securisport (FIFA, UEFA)
 ‣ measurement of coefficient of friction (COF) and abrasion
 ‣ no temperature measurement
 ‣ rotational movement
 ‣ low speed & pressure
Overview

• introduction
• goal
• experimental setup
• results & discussion
• conclusion
Goal

• develop a new test device in order to assess the risk of sliding injuries on different types of artificial turf
• realistic approximation of a sliding
• realistic values for player speed and mass, which can be varied
• friction and temperature measurement
Overview

• introduction
• goal
• experimental setup
• results & discussion
• conclusion
sledge
ramp
field
Faculty of Engineering – IR04 Department of Mechanical construction and production.

03/04/2007

The graph shows the temperature [ºC] over time [s]. The temperature increases sharply initially and then decreases gradually over time.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
Faculty of Engineering – IR04 Department of Mechanical construction and production.

03/04/2007
03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
Experimental setup

- velocity: up to 22km/h
- sledge mass: 15→31kg
- bottom of sledge: newly developed artificial skin
- thermocouples inside skin (1000Hz)
Temperature and sliding distance measurement

03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
Overview

• introduction
• goal
• experimental setup
• results & discussion
• conclusion
Results

• temperature rise & sliding distance

\[\text{COF} = c \left(\frac{h}{L} \right) \]
Results

• temperature rise & COF

![Bar chart showing temperature rise and COF comparison]

03/04/2007
Faculty of Engineering – IR04 Department of Mechanical construction and production.
Results

• influence of mass of sledge
 ‣ \(E_{\text{kin}} = \frac{mv^2}{2} \rightarrow \text{linear} \)
Results

- influence of initial speed of sledge
 ‣ $E_{\text{kin}} = \frac{mv^2}{2}$ → quadratic?
 ‣ $L \sim v$ → more cold turf in contact with skin
Overview

• introduction
• goal
• experimental setup
• results & discussion
• conclusion
Conclusion

- new test device: risk of sliding injuries on different surfaces
- realistic approximation of a sliding
- realistic values for player speed and mass, which can be varied
- friction and temperature measurement
Conclusion

- classification of surfaces based on COF is not correct
- classification based on temperature seems more significant: the lower the temperature rise, the better
- temperature rise on natural turf < on artificial turf
Future work

• integration with abrasion measurements
• more testing on other conditions (frozen, wet, … fields)
• maximum value for the skin temperature should be set
Experimental setup
Experimental setup
Experimental setup
Experimental setup
Experimental setup