Mechanical Test Devices used to Investigate Influences of Parameters on Traction in Football

Bob Kirk and Matt Carré
Traction at Shoe-Surface Interface

• Optimise traction
 – performance (grip)

 – injury risk
 (excessive forces and moments)

• Aim: understand role of shoe and surface parameters in important movements
Boundary Conditions in Mechanical Tests
Subjects v Mechanical Tests

- **Subject tests**
 - *more realistic loading* of important movements
- **However, difficult to control**
 - intrusion of sensors and lab environment
 - recreating laboratory playing surface
 - *poor repeatability*

clouds influences of shoe variations on traction
Product Testing

- Full shoe tests
 - Benchmark shoes
 - *Which parameters* causes the *difference* in traction?
 - Our methodology – simplified but *controllable* “shoe”
Test Equipment - Traction

- Flat plate mimics shoe sole – control of stud type and configuration
- Horizontal and vertical load cells
- Translational movement
- Bespoke stud geometries (80 shapes)
Test Equipment - Penetration

Controllable drop height and mass

Accelerometer

Inter-changeable hammer geometry

Low friction rail

Stud Dropper

Attach commercial and bespoke studs

Graph: Force (N) vs. Displacement (mm)
Dangers of Mechanical Testing

- Loading must be representative
 - Trends can be reversed!

Results from Nigg (1990)\(^1\)

\[\text{Loading scenario must be representative of movement simulated}\]

\(^1\)Nigg (1990) The validity and relevance of tests used for the assessment of sports surfaces. Medicine and Science in Sports and Exercise, v 22, pp. 131-139
Kinematics of Movements

Forefoot push-off

Heel plant during kicking
Initial Conditions

• Forefoot sprint
 – $V_{initial} = 2.6 \text{ ms}^{-1} @ 55^\circ$
 – $\theta_{\text{shoe-surface}} = 25^\circ$

• Heel impact
 – $V_{initial} = 3.0 \text{ ms}^{-1} @ 32^\circ$
 – $\theta_{\text{shoe-surface}} = 25^\circ$
• Horizontal velocity of shoe ~ 0 relative to surface during movement
Ground Reaction Forces

- When is player most at risk of slipping?
Summary of Loading Scenario

- Forefoot sprint (performance)
 - *oblique penetration* impact (55°)
 - *small movement* between shoe and surface after initial contact
 - *orientation* of shoe varies during impact
 - 40° at time of max a-p force
 - 20° at time of max F_{a-p}/F_{ver}
 - *normal force* varies through movement
 - 1400 N at time of max anterior-posterior force
 - 350 N at max F_{a-p}/F_{ver}

more representative mechanical testing
Traditional Mechanical Testing

- Shoe dragged along ground
 - velocity / displacement driven movement
 - force of actuator matches movement

- Peak force recorded
 - occurs after significant displacements
 - how relevant to performance traction ???
Appropriate Loading Scenario

- Foot is active control system
 - player runs differently on different surface without conscious thought (Denoth et al. 1985)
 - biological feedback loops

Movements are mixture of force and displacement control
Force-controlled Test

- *Force-control* perhaps more relevant to many football movements

- Ideal movement: $V_{hor} = 0$
 - foot pushes against surface

- Surface failure
 - performance lost (immediately)
Results and Understanding Data
Drop Test - Surfaces

Hemisphere 30 cm

Displacement (mm)

Force (N)
Artificial Athlete Correlations

\[y = -0.0235x + 81.313 \]

\[R^2 = 0.7399 \]
Traction – Stud Parameters

- Stud variables
 - length
 - width
 - cross-sectional area
 - face area
 - angle
 - slenderness
 - other shape parameters

- Difficult to only vary *one variable at a time*
Multiple Parameter Dependence

- Multiple parameters vary for each point
 - length
 - width
 - shape …

- Poor understanding from plot 2-D graphs of experimental data
Artificial Neural Networks

- **Non-linear data regression**
 - multi-parameter traction function
 - handles non-linearity
 - fits data well
 - test data 2.6 %
 - unseen data 10.1 %
 - linear model 35.6 %

- **Uses**
 - prototype shape traction predictor
 - influence of variables
1) Enter values of stud parameters

Cross-sectional Area (mm²) 200
Length (mm) 15
S1 0.6
S2 0.7

2) Click Evaluate

Dynamic Traction (N) 332.7

Shape Parameters

\[S_f = \frac{\text{cross-sectional area}}{\text{face area}} \]

\[S_2 = \frac{\text{min width}}{\text{max width}} \]

Benchmark Values

- adidas World Cup FF 159.3 N
- adidas World Cup Heel 282.4 N
- adidas Copa Mundial FF 136.4 N
- adidas Copa Mundial Heel 167.2 N
1) Choose parameter to vary

2) Enter values

Constant values

- Cross-sectional Area (mm²): 300
- Length (mm): Min. 0, Max. 18
- S1: 0.5
- S2: 0.707

Dynamic Traction (N)

Length (mm)

Traction equation:

\[Traction = 0 + 0.034x^2 + 1.105x^3 + 24.955x^2 + 114.955x \]

Plot

Hold plot? Yes

Display equation? Yes
Conclusions

• Mechanical tests devices should recreate closely actual loading conditions

• Kinematic and kinetic data essential
 – loading
 – shoe orientation
 – velocity
 – insight into movement

• Non-linear influences of stud parameters
 – artificial neural networks show promise in modelling data
 – prototype prediction
Questions

???