Artificial Soccer Turf – What Shoes to Wear?

Thorsten Sterzing, Clemens Müller, Thomas L. Milani
thorsten.sterzing@hsw.tu-chemnitz.de
Chemnitz University of Technology
Development of Artificial Soccer Turf (AT)

1st Generation
1960
concrete layer
no infill

2nd Generation
1980
elastic layer
sand infill

3rd Generation
1990
elastic layer
sand/rubber infill

Introduction Methods Results and Discussion Conclusion

U 17 World Cup
Peru 2005

U 20 World Cup
Canada 2007

Young Boys Bern
Switzerland

Red Bull Salzburg
Austria
FIFA 1-Star and 2-Star Installations

<table>
<thead>
<tr>
<th>Continent</th>
<th>1-Star</th>
<th>2-Star</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEFA</td>
<td>109</td>
<td>121</td>
</tr>
<tr>
<td>AFC</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>CONCACAF</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>CAF</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>CONMEBOL</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>OFC</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Game Characteristics

- Only slight changes depending on playing level
- Discrepancy of objective and subjective data

- FIFA 2007
- Anderson et al. 2008
- Müller et al. 2009

Exception: Sliding Tacking
Injury Observations

- No major differences in injury incidences

Prospective Studies

Critical Improvement compared to 1st and 2nd Generations of Artificial Turf

- Ekstrand et al. 2006
- Fuller et al. 2007a
- Fuller et al. 2007b
- Steffen et al. 2007
Purpose:

Development of an AT Soccer Shoe Outsole
- A Three Phases Project -
Project Chronology

Phase I 2007: Status Quo Evaluation

Phase II 2008: Prototype Modification

Phase III 2009: Market Comparison

Introduction, Methods, Results and Discussion, Conclusion
Comprehensive Evaluation of Athletic Footwear

Performance

Biomechanical

Perception

Performance – Slalom Parcours

- 3 repetitive runs per shoe condition
- 2 minutes rest between runs
- Shoe change between each run

- Variables
 - Running time
 - Running time perception

Perception – Traction

• Several rapid cutting movements
• Questionnaire: 9-point perception scale
• Variable
 - Traction suitability
Biomechanical – Cutting

• 45° cutting movement, two step approach
• 5 repetitive trials
• Variable
 - Force ratio: m-l shear/vertical

• high shear forces during cutting movements in soccer (Valiant, 1987)
Testing Protocol

• subject pool of 37 experienced soccer players
 (23.0 ± 3.4 years, 177.4 cm ± 4.3, 71.4 ± 6.1 kg)

• 4 different shoe models in each phase

• Randomization of shoe models

• FIFA 2-Star *Liga Turf 240 22/4 RPU brown* (Polytan)

Statistics

- Mean and standard deviation
- Repeated measures ANOVA \((p < 0.05) \)
- Post-hoc test: Bonferroni \((p < 0.05) \)
Phase I – Status Quo Evaluation

Natural Grass Outsole Designs

- hard ground (HG)
- firm ground (FG)
- soft ground (SG)

first prototype

innovative design (ID)

currently used on artificial turf

DuoCell technology at forefoot

Introduction Methods Results and Discussion Conclusion
Perception: Slalom running time
p<0.0001

Slalom running time
p<0.0001

Biomechanical force ratio Fx/Fz
p=0.0012

Traction suitability
p<0.0001
Findings: Phase I – Status Quo Evaluation

Natural Grass Outsole Designs

- hard ground (HG)
- firm ground (FG)
- soft ground (SG)

Phase II prototypes based on the innovative design

- first prototype
- innovative design (ID)

- better suited
- less suited
- better suited

Introduction

Methods

Results and Discussion

Conclusion
Traction Concept

Availability - Mechanics

\[\neq \]

Utilization - Biomechanics

- Interface
 - Material
 - Geometry
 - Loading

- Athlete
 - Anatomy
 - Anthropometrics
 - Body Composition
 - Motor Performance Skills
 - Training Status

Optimization of Traction for Maximization of Performance

Introduction Methods Results and Discussion Conclusion
Phase II – Modified Prototypes

- **Phase I (ID)**
 - Innovative design

- **DC-FG**
 - DuoCell only at forefoot
 - FG design at rearfoot

- **DC 85**
 - DuoCell at forefoot and rearfoot
 - Slightly different TPU hardness

- **DC 90**
Slalom running time

$p = 0.04$

[Graph showing comparison of ID, DC-FG, DC 85, and DC 90]

Biomechanical force ratio F_x/F_z

$p = 0.70$

[Graph showing comparison of ID, DC-FG, DC 85, and DC 90]

Perception: Slalom running time

$p = 0.02$

[Bar chart showing perception of ID, DC-FG, DC 85, and DC 90]

Traction suitability

$p = 0.10$

[Bar chart showing traction suitability of ID, DC-FG, DC 85, and DC 90]
Findings: Phase II – Modified Prototypes

• no negative effect of rearfoot DuoCell compared to rearfoot FG
• no effect of TPU hardness

Phase III prototype based on DC 90 design
Introduction

Methods

Results and Discussion

Conclusion

Phase III – Market Comparison

Predator Absolion PS TRX AG (AP)
Tiempo Mystic II MG (NT)
King XL Synthetic Grass HG (PK)
final Prototype (DC 90)

commercially available artificial turf designs
Introduction

Methods

Results and Discussion

Conclusion

Slalom running time

\[p = 0.0035 \]

Perception: Slalom running time

\[p = 0.0051 \]

Biomechanical force ratio Fx/Fz

\[p < 0.0500 \]

Traction suitability

\[p = 0.0006 \]
Findings: Phase III – Market Comparison

- Final prototype outperformed three commercially available shoes.
- Relatively short and evenly distributed stud configurations were identified to provide good functional traction to players.
- Comprehensive approach was shown to be successful for the development process of an artificial soccer turf outsole.
Thank you very much for your attention!

This research was supported by